Early development of electrical excitability in the mouse enteric nervous system.
نویسندگان
چکیده
Neural activity is integral to the development of the enteric nervous system (ENS). A subpopulation of neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development (at E10.5 in the mouse). However, the electrical activity of these cells has not been previously characterized, and it is not known whether all cells expressing neuronal markers are capable of firing action potentials (APs). In this study, we examined the activity of "neuron"-like cells (expressing pan-neuronal markers or with neuronal morphology) in the gut of E11.5 and E12.5 mice using whole-cell patch-clamp electrophysiology and compared them to the activity of neonatal and adult enteric neurons. Around 30-40% of neuron-like cells at E11.5 and E12.5 fired APs, some of which were very similar to those of adult enteric neurons. All APs were sensitive to tetrodotoxin (TTX), indicating that they were driven by voltage-gated Na+ currents. Expression of mRNA encoding several voltage-gated Na+ channels by the E11.5 gut was detected using RT-PCR. The density of voltage-gated Na+ currents increased from E11.5 to neonates. Immature active responses, mediated in part by TTX- and lidocaine-insensitive channels, were observed in most cells at E11.5 and E12.5, but not in P0/P1 or adult neurons. However, some cells expressing neuronal markers at E11.5 or E12.5 did not exhibit an active response to depolarization. Spontaneous depolarizations resembling excitatory postsynaptic potentials were observed at E12.5. The ENS is one of the earliest parts of the developing nervous system to exhibit mature forms of electrical activity.
منابع مشابه
Morphine Decreases Enteric Neuron Excitability via Inhibition of Sodium Channels
Gastrointestinal peristalsis is significantly dependent on the enteric nervous system. Constipation due to reduced peristalsis is a major side-effect of morphine, which limits the chronic usefulness of this excellent pain reliever in man. The ionic basis for the inhibition of enteric neuron excitability by morphine is not well characterized as previous studies have mainly utilized microelectrod...
متن کاملCholinergic Submucosal Neurons Display Increased Excitability Following in Vivo Cholera Toxin Exposure in Mouse Ileum
Cholera-induced hypersecretion causes dehydration and death if untreated. Cholera toxin (CT) partly acts via the enteric nervous system (ENS) and induces long-lasting changes to enteric neuronal excitability following initial exposure, but the specific circuitry involved remains unclear. We examined this by first incubating CT or saline (control) in mouse ileal loops in vivo for 3.5 h and then ...
متن کاملNon-cell-autonomous effects of Ret deletion in early enteric neurogenesis.
Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system (ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embr...
متن کاملMouse-chick neural chimeras.
Embryonic chimera production was used to study the developmental processes of the mouse nervous system. The difficulty of performing in situ transplantation experiments of neural primordium of mouse embryo was overcome by isotopic and isochronic grafting of mouse neural tube fragments into chick embryo. Mouse neural tube cells differentiated perfectly in ovo and neural crest cells associated wi...
متن کاملIon Channel Expression in the Developing Enteric Nervous System
The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 32 شماره
صفحات -
تاریخ انتشار 2012